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Path-Integral Monte Carlo Simulations of 
Electron Localization in Water Clusters 

D. Thirumalai,  I A. Wallqvist,  2 and B. J. Berne 2 

Path-integral Monte  Carlo simulations are used to investigate the possibility of 
binding of an excess electron to water clusters. Model potentials are used to 
characterize the interaction between the excess electron and a water monomer  
and between two water molecules. The simulations reveal that two water 
molecules can bind an electron. In addition, it is found that the excess electron 
can be trapped in the field of three water molecules arranged in a linear con- 
figuration. The results are used to comment  on recent molecular beam 
experiments. 

INTRODUCTION 

The Feynman path-integral approach (1~ in Euclidean time is a powerful 
tool to simulate the equilibrium properties of many-body quantum 
systems. (2) In the last few years there have been numerous simulations of 
interacting quantum spin systems as well as those of many-body systems 
(for a brief review, see Ref. 3) interacting via well-known potentials at finite 
temperatures. (4) All of these examples exploit the path-integral formalism 
and the Trotter formula for the exponential of a quantum operator. In this 
paper a brief review of the use of the path-integral Monte Carlo technique 
to simulate the equilibrium properties of quantum systems at finite tem- 
perature, interacting with each other by specified pair potentials, is presen- 
ted. We use this basic formulation to investigate the localization of an 
excess electron by clusters comprised of finite number of water molecules. (5) 
This is an important problem because an understanding of the nature of 
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electron states in these systems can be used to describe the general 
phenomena of an excess electron in polar liquidsJ 6) Many of the models 
that have been used to predict the structural and dynamical properties of 
an electron in polar solvents have been purely phenomenological in nature. 
We were motivated to explore the behavior of an excess electron in water 
clusters not only because of its obvious importance in a variety of physical 
situations but also by the recent molecular beam experiments by 
Haberland et al. (7'8) They have examined the stability of e - - ( H 2 0 ) ,  
systems as a function of n, the number of water molecules comprising a 
cluster, in molecular beam experiments. They showed that the e - - ( H 2 0 ) ,  
is stable when n >~ 11. More surprisingly, it is claimed that, when the beam 
of water molecules is seeded with Ar atoms to effectively lower the beam 
temperature, two water molecules can localize an electron. They also assert 
that e - - ( H 2 0 ) ,  is no t  stable for n = 3, 4, or 5. Spurred by these findings 
we began to explore the stability and structure of an electron interacting 
with water clusters. Our calculations are based on model potentials. Path- 
integral Monte Carlo methods are then used to investigate the possibility 
of electron localization in water clusters as a function of the cluster size. 
This method is probably not as accurate as ab initio calculations but is 
applicable to larger clusters. In particular, it is hoped that by obtaining 
model potentials that describe the energetics of electron-water clusters 
fairly accurately one can use them in quantum mechanical simulations of 
an electron in liquid water. 19'11) (For a related review, see Ref. 10). In this 
article we discuss our results for the stability and structure of e - - ( H 2 0 ) ,  
system for n = 2 and 3 using path-integral Monte Carlo (PIMC) techni- 
ques. 

This review is organized as follows. In Section 2 we discuss the 
methodology of PIMC as it applies to electron localization in water 
clusters. Section 3 describes the calculations and the results. We conclude 
with a discussion in Section 4. 

T H E O R Y  

In this section we discuss the implementation of the path-integral 
Monte Carlo method and the particular way it is exploited for the problem 
considered here. The formulation presented here is applicable to any N- 
body problem. The Hamiltonian of the excess electron interacting with N 
water molecules can be written as 

P'~=)+ 3-" V(/~;,/~j)+ 2 U(F,/~) (1) 
i = 1  • = 1  i = 1  

=T+ VT 
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where f, ~ denote the coordinate of the electron and the momentum con- 
jugate to ?, fi(~) is the momentum of the eth species of the ith water 
molecule and M s is the corresponding mass, where M s = M o  and 
M2,3 = MH are the oxygen and hydrogen masses respectively, /~i denotes 
the collection of the coordinates of the ith water molecules, V(-K'i,/~j) is the 
potential of interaction between water molecules, and U(L/~i) is the 
interaction potential between the excess electron and the ith water 
molecule. The quantity of interest is the canonical partition function Q for 
the Hamiltonian at the temperature T which is given by 

Q = tr(e ~l-i/p)p (2) 

If we neglect the exchange contribution 3 due to the indistinguishability of 
the water molecules we can insert unity in the form 

with ]/~, ?)  = l/~1,/~2 ..... /~u, r ) ,  P times in (2) to write Q in this represen- 
tation as 

P 
Q= l~  f d R ~  I~(0, ~(')]e eHIl~(t+m) , ~ ( t + l ) )  ( 3 )  

t--1 

In (3) e = f l / P  and /~(e+,)=/~1),  and F(e+i)= F(I). If e is small, which can 
be arranged by making P sufficiently large, then we can use the Trotter for- 
mula 

e-~(T + vT) = e ~-~/2) yr. e , r .  e ~-~/2) vr + O(e2) (4) 

where the Hamiltonian is split into a kinetic energy term and a potential 
energy piece with 

t'L  (5) 
i=1 ~=1 2M~ 

In the coordinate representation (4) becomes 

N 3 M ~ K ( ' ~  _ ~ ( , + 1 ) ) 2  m 
-~- E ~.a ~ i(~) ~'i(~) ~_ (~(t) ~(t +I))2 

i=  1 ~= 1 2h2~ 

~( '+ '))]} (6) 

3 The mean distance between the a toms is so large that the major  contribution to the partition 
function comes from the direct paths. 
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Substituting (6) into (2) the partition function in the discretized path- 
integral formulation can be written as 

( me "]3P/2 (MopX3NP/2 (MHP'~3NP 

N P 
x fexp( -S . • )  [-[ l-I dRlJ) dr(J) (7) 

i--1 j : l  

Seff=fl(V e w+ Vw_w)  (8a) 

. ] 
Ve--W=j ~'~'=1 (r(J)--r(J+l))2-l-~lP i:1 ~ V(r(J)'/~lJ)) (8b) 

and 

"= j~l c~=l 2 - - ~  ~" i(cQ--i'cQ I))2 +2=P t V(RIJ)'R(J)) 

(8c) 

Thus in the discretized path-integral formulation the system consisting of 
3N+ 1 quantum particles is isomorphic to 3NP+P classical particles 
moving in a potential field given by (8). This formulation allows us to 
evaluate Q and all the relevant properties (like energy and distribution 
functions) by classical Monte Carlo techniques. If the isomorphic classical 
system is ergodic, then one can also use molecular dynamics to evaluate the 
equilibrium properties. (~2) The conditions under which one expects the 
molecular dynamics method for quantum mechanical systems to be 
unreliable is given elsewhere. (~3) It should be pointed out that there are 
ways to circumvent these difficulties. (14'1s) For the problem of the binding 
of an electron to water clusters we have chosen to use the Metropolis 
Monte Carlo method (16) to calculate the properties of interest. 

R E S U L T S  A N D  D I S C U S S I O N  

The calculations are performed by equilibrating the isomorphic 
classical system consisting of 3NP + P particles moving in an effective 
potential given by (8). The initial configuration of the isomorphic system is 
arbitrary, and the results reported here are independent of the starting con- 
figuration. The stability of the e -  (H20)n is determined by (a) the overall 
external potential energy between the electron and water clusters, (b) the 
behavior of the external electron-oxygen radial distribution function 
geo(r), and (c) examination of the configurations of the e-(H20)n system. 
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The nature of the electron state is inferred from geo(r) and by inspecting 
the configurations generated during the simulation. Unless otherwise stated 
all the calculations were done at 5K. Before presenting the results we 
briefly describe the interaction potentials V(/~i,/~j) and U(~,/~i). The term 
V(Ri, Rj) is taken to be the modified central force potential of water. The 
internal vibrations of the water molecule are modeled by a set of Morse 
potentials. (17) The electron-water monomer interaction U~(~, _Ri) consists of 
three terms: (a) an exponential repulsive interaction due to the closed shell 
electrons; (b) an anisotropic electron-dipole interaction centered in the 
center of charge of the water molecule and (c) an electron-induced dipole 
interaction due to the water polarizability centered on the oxygen atom. In 
order to assess the role of the polarizability of the water molecules (term c) 
another model potential, to be referred to as UII(&/~i), was constructed by 
omitting the third term in UI(~,/~). The details of these potentials are 
given elsewhere. (5) 

The results reported here were obtained by averaging over 13,000 
passes (5) after the system equilibrated. In all calculations the number of 
pseudoparticles for the electron was taken to be 1,000, and the number of 
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Fig. 1. Plot of the electron-oxygen radial distribution functions gleo(r ) and n g~o(r) as a 
function of r calculated using U1(f, Ri) and UII(~ K,), respectively, for the electron-water 
dimer system. 
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pseudo particles in the hydrogen and oxygen chains was set to 100. In 
Fig. 1 a plot of the electron-oxygen radial distribution function geo(r) 
given by 

g~~ - ' ~  i=l '=l  

g~o(r) as a function of r is presented�9 The two curves labeled g~o(r) and n 
were calculated using U~(F, Ri) and Un(F,/~g), respectively. The solid line 
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Fig. 2. This figure shows the instantaneous projection of the coordinates of the bound 
electron-water dimer system onto the x y ,  z y ,  x z  planes. The coordinates of the isomorphic 
electron polymer chain are connected by dotted lines. The coordinates of the water molecules 
are connected by dark lines. The electron polymer chain is highly diffuse whereas the water 
molecules are very localized. 
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representing g~o(r) shows a peak in the electron density for r > 2  
followed by a slowly decaying tail with a range of about 30-40 A. A 
qualitatively similar result is indicated by ii geo(r). However, the peak at 
r ~ 9 ~ is much less pronounced, but the range remains the same. These 
curves clearly indicate that the bound electron can be characterized as 
being in a diffuse state. It is clear that the inclusion of the polarizability of 
the water molecule seems to increase the strength of the binding of the elec- 
tron to the water dimer. This is reflected in the binding energy, which is 
found to be about 3-6 meV using UI(s whereas it is lowered to about 
2-3 meV using UII(F~ /~). 

In order to gain insight into the geometry of the electron-dimer system 
we present a portion of the coordinates of the isomorphic classical system 
projected onto the xy, zy, and xz planes in Fig. 2. This figure shows that 
the electron is in a diffuse orbital, and inspection of the whole figure shows 
that the spatial extent of the electron cloud is as large as 100/~. It is trans- 
parent from this figure that the two water molecules are located on the 
fringes of the electron cloud and that the electron density is anisotropically 
distributed around the water dimer. 

We now turn our attention to the binding of an electron to a water 
trimer. The water trimer can exist in many different configurations which 
can be classified (18) according to the number of hydrogens of the central 
molecule that participate in hydrogen bonding. We confine ourselves to 
one such configuration labeled as the single donor linear conformer (SDC). 
In this configuration one of the hydrogens of the central molecule is 
engaged in hydrogen bonding, whereas the hydrogens of the two terminal 
molecules are free, resulting in an open linear configuration. As in the elec- 
tron-water dimer case the e - - ( H 2 0 ) 3  was equilibrated starting from 
various arbitrary initial configurations, and various quantities of interest 
were calculated by averaging over 13,000 passes after the initial 
equilibration. The results obtained were independent of the starting con- 
figurations. In Fig. 3 we plot the electron-oxygen radial distribution 
functions g~o(r) and n geo(r) using model potentials UI(f,/?i) and Un(f,/~i), 
respectively. It is clear that there is a substantial peak in g~eo(r) at r ,-~ 10 A, 
followed by a slowly decaying tail that eventually vanishes at r ~ 40 A. The 
dashed line denoting H geo(r) also shows a peak at r ~ 10 ~,, but the range is 
longer. There is a dramatic decrease in the peak height at r ,-~ 10/~ in n geo(r) 
as compared to the one in gIeo(r). This is clearly an indication that the 
polarizability term plays a key role in enhancing the strength of the binding 
of the electron to the SDL trimer molecule. Both gIeo(r ) and _i~ ~r ~ exhibit ~eOt ! 
a slowly decaying tail indicating that the electron is in a very diffuse surface 
state. It is interesting to compare geo(r) to the electron-dimer and the elec- 
tron-trimer systems and this is shown in Fig. 4. This figure shows that the 
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Same as Fig. 1 except for the electron-water trimer system. The water trimer is in the 
single donor linear (SDL) configuration. 
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Comparison of the electron-oxygen radial distribution functions between the 
e - (H20)3  and the e - - ( H 2 0 ) 2 .  Both curves were calculated using Ui(r;/~i). 
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peak height at r-,~ 10 ~i is smaller for the e - - ( H 2 0 ) 2  than it is for the 
e -(H~O)3. Both curves show a very sharp peak at r<2~t ,  which is a 
consequence of the trapping of the electron density by the deep well present 
in the electron-monomer potential/5) In addition, there is a peak in g~o(r) 
corresponding to the electron-water trimer at r --~ 5 ~ which is absent in the 
dimer radial distribution function. This peak corresponds to the presence of 
electron density near another water molecule and suggests that the electron 
is essentially localized by the field of two water molecules, with the third 
one playing a lesser role. The comparison in Fig. 4 also suggests that the 
excess electron is more strongly localized by the water trimer than by the 
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Projections of the coordinates of the isomorphic electron-water trimer system onto 
the xy ,  zy, x z  planes. 
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water dimer. This is consistent with the higher binding energy for the elec- 
tron-trimer system (estimated to be between 4 and 9 meV) compared to the 
electron-dimer system. 

Because the geo(r) only represents an angularly averaged quantity it is 
of interest to look for other evidence of the electron density distribution. 
We have done this by projecting the coordinates of the isomorphic classical 
system onto the xy, zy, x z  planes shown in Fig. 5. This demonstrates 
that the water molecules are confined to a small volume in space, whereas 
the electron is spatially extended. It clearly shows the anisotropy in the 
electron distribution and also allows one to unequivocally infer that the 
electron is in a diffuse surface state. 

In light of these calculations what can one say about the stable elec- 
tron-water dimer and the improbability of observing the stable electron- 
water trimer in the recent molecular beam experiments? To partially 
answer this question we examined the temperature dependence of the 
stability of the electron-water dimer system. The calculations were repeated 
at T =  20K and the results indicated that the excess electron does not bind 
to the water dimer. This is consistent with the low binding energy. Thus, 
unless the beam temperature is very low, these calculations do not explain 
the mechanism of the formation of the stable electron-water dimer in a 
molecular beam. The lack of prominence of the e - - ( H 2 0 ) 3  peak seen in 
the recent molecular beam suggests that the predominant trimer conformer 
formed in a molecular beam is the one in which all three oxygen atoms are 
equivalent and where each water molecule has one hydrogen atom involved 
in hydrogen bonding. This conformer is called the single donor  cyclic con- 
former (SDC). Our calculations (5/ indicated that the excess electron is not 
localized by three water molecules in the SDC configuration. However, 
Haberland et al. note that when the beam was seeded with Xe instead of Ar 
they were able to detect weak signals corresponding to the e - - ( H 2 0 ) 3  
system. This suggests that Xe may facilitate the formation of the trimer in 
the SDL configuration. It would be desirable to perform further 
experiments to confirm our prediction that if SDL trimer conformer can be 
formed the resultant anion is more stable than the dimer anion. 

C O N C L U S I O N S  

In this paper, using path-integral Monte Carlo methods, we have 
explored the possibility of electron localization in water clusters. The major 
conclusions of our study are: 

(a) It is shown that two water molecules can localize an electron. The 
excess electron is in a spatially diffuse surface state and the binding 
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energy of the electron-dimer at 5K is estimated to be between 
3-6 meV. The attached electron does not induce major structural 
changes in the water dimer, which is consistent with the weak binding 
energy. These results are in accord with the LCAO M O - S C F  
calculations of Chipman.(19) 

(b) The inclusion of the spherical polarizability term enhances the 
strength of localization and gives rise to larger binding energy. 

(c) A trimer molecule in the single donor  linear conformer localizes the 
excess electron and the binding energy is estimated to be between 
4-9 meV. As in the case of the electron-dimer system, the electron is 
in a diffuse surface state. 

One of the major advantages of path-integral Monte Carlo 
calculations is the insight that one gets by examining the details of quan- 
tum many-body systems. In the example considered here it is practically 
impossible to experimentally determine the electron distribution or the 
structure of the water molecule around the electron. The hope is that these 
insights will enable us to construct appropriate models whose theoretical 
treatments will shed light on analogous complex systems. As was pointed 
out in the Introduction, quantum Monte Carlo simulations are finding 
increasing use in virtually all of physics where progress in analytical treat- 
ment is at present prohibitively difficult. In this spirit, quantum Monte 
Carlo is being used to study problems in fields ranging, from particle 
physics/2~ to biological sciences. (21) It is toward this end that quantum 
Monte Carlo simulations can be of great use. 
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